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A method for solving a non-steady plane contact problem for a laminated medium is proposed. It is 

based on a combination of analytical methods (the virtual absorption method and the vector-valued 

eigenfunction method for defining the influence function of the medium in integral Fourier transforms) 

and on numerical inversion of Laplace transforms. The advantage of the method is that it offers the 

possibility of examining systems with an arbitrarily number of layers. The solution can be used to study 

the dynamics of the punch in detail and to trace the changes in the nature of the non-steady process in 

the medium. 

Numerical analysis is carried out for a band-shaped punch in frictionless contact with a stack of three 

or more layers rigidly attached to a non-deformable base. A vertical load is applied to the punch. The 

displacement of the punch and of the points of the medium are analysed as functions of time, for 

different relationships among the elastic and geometric parameters of the problem. 

1. STATEMENTOFTHEPROBLEM ANDSCHEMEOFSOLUTION 

CONSIDER the dynamical interaction of a rigid band-shaped punch of mass M and width 2u with 
a laminated semi-bounded medium. A load P(t) which varies arbitrarily with time t, is applied 
to the punch. The medium occupies the region -H - z -C =S 0, -S x, y G 00 and is represented 
as a stack of N rigidly interconnected layers of overall thickness H = 2(h, + . . . +hN) (hi 
denotes half the thickness, pi is the Lame parameter, v, is Poisson’s ratio and pi is the density 
of the ith layer). The lower surface of the stack is rigidly attached to a non-deformable base. 
The system is initially at rest. 

In a plane setting, the displacements of an elastic medium u(x, z, t)= {q, 4) due to an 
arbitrary load q(x, t) = (ql, q2) given in some region IX IS a, z = 0, may be expressed as 
convolutions [l] in Laplace transforms with respect to the time t 

u(x,z,p)= jk(x-5.z.P)q(&/G& 
--(1 

k(x, z, p) = (2x)-’ j K(a, z, p)emicuda 
_- 

(1.1) 

(1.2) 

where p is the Laplace transform parameter and a is the Fourier transform parameter. 
Equations (1.1) and (1.2), which are derived by means of integral transforms [l] from Lame’s 

differential equations for the motion of the points of the medium, may be written differently as 

U(a,z,p) = K(az,y)Q(ap) (1.3) 
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where the matrix function K(a, z, p) = II Kii Ii& in the integrand is determined by the type of 
medium; for l~nated media it has the same form as in the theory of steady vibrations, except 
that instead of the vibration frequency w one puts ip, where i is the square root of -1. 
The properties of K(a, z,p) are known [l]; U(a, z, p), Q(a, p) are the Fourier and Laplace 
transforms of the functions u and q, respectively. 

Equations (l.l)-(1.3) are of fundamental importance for studying the interaction of surface 
objects with elastic media and the propagation of waves from surface sources. One of the most 
errant aspects of the problem is the co~truction of K(a, z, p) for la~nated media. 

If mixed boundary conditions are specified on the surface of the medium 

u(x,O,p) = w(p), 1x1s a, z = 0 

q(x,p) = 0, lxb a, z=O 

Equation (1.1) yields an integral equation for the contact problem in Laplace transforms. The 
unknown contact stresses in the contact region Ix IS a, z = 0, are determined from a Fredholm 
equation of the first kind 

(1.4) 

If the dynamical load is transmitted to the medium through a rigid punch, one must 
consider, in addition to (1.4) differential equations for the motion of the punch itself. 

We will outline a general scheme to handle this type of problem, on the assumption that the 
load is applied vertically to the punch, P(f) = (0, P}, and that the contact between the punch and 
the medium is frictionless. We then have one equation of motion for the punch, which may be 
written in terms of Laplace transforms 

Mp2w = P(P)- Q(P), Q(P) = jqk P)& (1.5) 
* 

where Q(p) is the reaction of the base, which may be written in terms of the fictional Q(cx, p) 
as Qol) = Q(0, P). 

1. Construct the matrix-function K(a, z, w) for a laminated medium; substitute o = ip to get 
K(a z,p). To allow for viscosity in the medium, make the formal substitution w = ipee’<, where 
[is a viscosity parameter for the medium (the coefficient of loss due to internal friction in the 
material of the base; in that case, the constants of elasticity in the Lame equations are complex 
quantities of the form ;lie”, ~,e~~, 0 s 2{ G 1 [2]). 

2. Use the virtual absorption method to determine the unknown contact stresses q,,(x, p), the 
reaction of the base Q&) and the functional Q,,(cc, p) from the integral equation (1.4), on the 
assumption that the vertical displacement of the punch is unity, w = {0, l), in which case the 
equation is 

~~(x-~,P}~~(~,p)~~=l WI 
-0 

kcx,p)=$J Wa,pWicuda, K(a,p)=K,,(a,O,p) (1.7) 

3. Use the equation of motion (1.5) and the linear formulation of the problem to determine 
the punch displacement w = (0, w} 

W(P) = P(PWP2 + &(PW (1.8) 

4. The displacements of the points of the medium for lx I> a, -22 =s z s 0, are obtained in 
terms of Laplace tr~sfo~ from (1.3), where 
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5. Inverting transforms in (1.8), (1.3) and (1.9), we obtain the required functions IV(t) and 
u(x, z, t), representing the motion of the rigid punch and the displacements in the medium 

2. CONSTRUCTION OF K(a, 2, cu) FOR A STACK OF N LAYERS 

Consider an elastic layer of thickness 2h, -4 s z G h, with harmonic loads TeTimt, Re-‘“‘, 
applied to its upper and lower faces, respectively. The solution for the layer is constructed by 
the method of vector-valued eige~unctions 131; in three dimensions, it is 

Write the solution in terms of Fourier transforms with parameters a, B (Q” = {Q:, Qi, Q,‘} is 
the load vector) 

a(z)= [Ai(z)Q+ + Ah(z)Q-lp-' 

Q: =iX*[(ti Tq)a+(r2ir,)~] 

Qzf=ih-2[(1,7~)p-(fzrr2)al, Q3f=t3+r3 

t = 1 j ~p-+B~tw, c = j ~&(~+Pv)dxdy. 
mea -0 

where the elements of the matrix Ai are 

AA = ia('o,(h* ch(zo,)ch(ha,)- ych(ha,)ch(zoz)) 

A+ 12 = -$2ch(zo,)(cr, sh(hcr,))-’ (2.2) 

A; = -WA+‘)-‘(Y chba, )sh(ha,)- CT,Q~ sh(ha,)ch(zo2)) 

A,: =P/aA,:, Al2 =--a/PA&. A& = j3h.A& 

A$ = h’(A++)-‘(ych(ho,)sh(to,)-a,a, sh(za,)ch(ha,)) 

A& =o 

A& =o,(A+)-‘(ysh(zo,)sh(ha,)-h2sh(ha,)sh(zo2)) 

A+ = Y* ch(ha, )sh(ha,)- h*a,a, sh(~~~)ch~~~~) 

X2 =a2+p2, y = A2 - 1/2f12 2% f7f = hZ - ef 

0: = eel, e; = p0t2 / fl, c=o-2V)/f2-2v) 

The matrix A&) and A- are found by cyclic substitution of sh for ch in A:(z) and A+; ,u is the 
Lame parameter, v is Poisson’s ratio, p is the density of the layer, and w is the vibration 
frequency. 

We define two matrices of a special structure 



706 0. D. PRYAKHINA and M. R. FREIGEIT 

Then Q’ = C’t f C-r, and the solution for one layer may be written as follows: 

a(z) = CA(z)t + H(z)r)p-’ 

A(z) = IA;(z)+ A&)lC+, B(z) = [A:W- Ah(z)IC- 

(2.3) 

(2.4) 

If the medium is a stack of N rigidly interconnected layers of thickness H = 2(h, + . . . +hN) 
(where hi is half the thickness of the ith layer), with a rigidly attached lower face, the overall 
solution may be obtained with the help of the single-layer solution (2.1), (2.3). 

We first introduce local coordinates for each layer 

Zk =z+2(h,+...+h,_,)+h,, k = 1,2,...,N 

Formally separating the layers, we can express the displacements of the points of layer k as 
follows: 

a, (zk ) = Mz, h_, + B(z, )tk )p;’ , k = 1,2,...,N (2.5) 

where t, are forces representing the interaction between layers, and t, is the force acting on 
the upper face. 

Note that in calculating the elements of the matrices A(z,), B(z,) in (2.5), as defined in (2.2) 
and(2.4),wemusttake h=h,, p=pk, p=pr, v=v,. 

The displacement must satisfy the joining conditions 

a&-M=++,(h,+,), k=1,2 ,..., N-l (2.6) 

and the rigid attachment condition 

ad-h,)=0 

Formulae (2.6) imply the following recurrence relation 

8, = pk 1 pk+l 

From (2.7) we determine 

tN = -B-‘(-&)A(-h&f,.,_, 

Using the recurrence relations (2.8) and (2.9), we can express 
surface load t, 

(2.7) 

(2.8) 

(2.9) 

the forces t, in terms of the 

tk = (-l)k nf=kF~‘A(-hi)t,, k = 1,2,...,N 

FN = IV-+), Fk = B(-hk) - &A&+1) + &B@k+&:,A(-hk+, 1, 

k = 1,2,...,N - 1 
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Thus, the displacements of the points of the laminated medium may be written as 

a(z) = K(a$,z,w)t, 

K(a$,z,~) = (-l)‘-‘(A(zk)- B(z,)F,-‘A(-I!,))* l-If,,_,F,:‘A(-&)j.f;‘, (2.10) 

k = 1,2,...,N 

In particular, it follows from (2.10) that for one layer rigidly attached to a non-deformable base 

a(z) = (A(z+ hI) -B(z+h,)B-‘(-/+)A(--h,))t&* 

For a stack of two layers the displacements are, in the upper layer 

a(z) = (A(z + h,) - B(z+ h,)F;‘A(-hI))tOp;’ 

in the lower layer 

a(z) = -(A(z,) - B(zZ)B-‘(-hz)A(-h2))F;‘A(-~~)toCLz’ 

z, =z+2h,+h 

where 

6 = B(-h,)-glA(h2)+g,B(~)B-‘(-h,)A(-h,) 

It has been shown that as J. + 00 the asymptotic behaviour of the matrix 
the medium (z = 0) is identical with that of K for a layer, being given by 

I 

a2W+p2S a$(M-S) -id 

K(a$.O,w)= A(h,)= aj3(M-S) p2k+a2s -ibL 

iaL @L R 

K at the surface of 

the functions M, S, L and R depend on the frequency o and the parameter AZ G a2 + p’; they 
admit of the following asymptotic representations as 1+ 00 

M-4(1-v,)W, s = 41 hl” 

L = (4v, - 2:P, R = 4(1 -v,)lhl-’ 

In two dimensions, we have /I = 0 (A = cr); the kernel in (1.2) 
second column and row from the matrix K(a, 0, z, co) =II K4. ll~=1 and substituting w = ip. Then 

is obtained by deleting the 

c=4(1-v,), b=4v, -2 

The approach outlined above for determining the matrix-symbol K(a, z, p), unlike other 
methods [4], enables one to avoid the difficulties encountered in the numerical treatment, due 
to the presence of increasing exponential constituents in the fundamental solutions of the 
relevant systems of differential equations. Because of such exponential terms, the linear 
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algebraic systems of equations obtained in dealing with the boundary conditions may well be 
ill-conditioned. 

3. SOLUTION OF THE CONTACT PROBLEM 

Let T,{O, q&, p)] be a solution of the integral equation (1.6), (1.7) when the right-hand side 
is unity (Kq,, = 1). Then the contact stresses in the punch/medium interaction region are given 
by q (x, p) = wCp)q&x, p). The solution q&, p) was constructed by the virtual absorption 
method of [5,6], which enables the singularity of the contact pressures on the punch surface to 
be determined analyticalLy. The Fourier integral Q,((x, p) of q&x, p) was computed in 
quadratures. The form of the functions q&x, p) for fixed values of w (w = ip) is known f6]_ 

The function Q,(ar, p) obtained by virtual absorption is fairly simple in form (B denotes an 
approximation parameter, BSl [6] 

Q,,(a,p)=K-‘(a,p)(a* +I?*)+ x 

(3.1) 

The coefficients C,(p) are determined by solving a linear algebraic system of equations (k, 
2=1,2,...,n) 

F(a,x)= 5 Res H(a,p)ei~‘(a-n)(B-iCPj)-~ (Oj +a)-’ 
j=IU='Pj 

H(a, p) = c-‘K(a, p)fa' + B* 1% 

where X, are points dividing the interval (0, a) into n equal parts, and qj and t,~~ are the poles 
and zeros of H(a,p) in the upper half-plane of a. 

4. DISPLACEMENTS OF THE PUNCH AS A FUNCTION OF TIME 

After substituting (1.9), (3.1) for a=0 into Eq. (1.5), we obtain (1.8). To obtain the final 
solution, we have to invert the Laplace transforms 

Physical considerations dictate that the integrand should not have roots in the upper half- 
plane Re p > 0, so the integral along a straight line parallel to the imaginary axis may be 
replaced by the integral along the imaginary axis. The substitution p = -iw then converts the 
Laplace inversion integral into a Fourier integral 
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W(t) = ~~Rew(io)cosordo = -Z;Imw(io)sinwldo 
x0 X0 

(4-l) 

To compute the base reaction Q(t) and the normal stresses q(x, t) in the contact region, we 
have to replace the function w(p) in the integrand of (4.1) by w(p)Q,(p) and w@)q,,(x, p), 
respectively. 

In what follows, we use Filon’s quadrature formula to compute integrals of the type of (4.1), 
as it yields rapid and accurate results for integrals of oscillating functions. 

5. DISPLACEMENTS OF POINTS OF THE MEDIUM 

The displacements of the points of the medium in the region Ix I> a, -H s z e 0, are 
obtained in Fourier-Laplace transforms from formula (1.3), with due attention to (1.9). 
Inverting the Fourier transforms we get 

Uj(X.“.Y) = ~aKil(a,z.p)e,(a,p)cos(a*)da. j = 1,2 

The required displacements u,(x, z, t) of the points of the medium are now obtained from 
(4.1) with w(p) replaced by uj(x, z,p). 

6. NUMERICAL ANALYSIS 

A numerical analysis of the problem was undertaken for a band-shaped punch in frictionless contact 

with a stack of three or more layers rigidly attached to a non-deformable base. The behaviour of the 
system was investigated for varying geometric and elastic parameters of the layers: the thickness, stiffness, 
density and viscosity of the medium. A comparative study of the behaviour of the punch was carried out 
for three, five and seven layers. 

Figure 1 plots the displacements of a punch of unit mass in frictionless contact with a three-layer 

medium for the following parameter values: p1 = 1, & =0.25 and p3 =O.S. A pulsed load P(r) = H(t)- 

H(t-0.01) is applied to the punch. Curves 1-3 are drawn for different thicknesses of the upper layer: 
2h, = 0.4, 0.8 and 1.2, but fixed thickness of the second and third layers: 2h, = 0.6 and 2h, = 0.4. As the 
thickness of the upper layer, which is in contact with the softer second layer, increases, one observes an 

increase in the arrival time of a wave reflected from the interface of the first and second layer. This wave 
arrives in phase, causing an increase in the punch displacements. The increase in the overall thickness of 

the stack also increases the period of the natural vibrations of the system after removal of the load. 
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Figure 2 plots the displacements of the punch for varying thickness and density of the third (lowest) 
layer, with the elastic and geometric parameters of the first and second layers fixed (p,; 27~)= (1; 0.4), 
(~2; 275) = (2; 0.6). The solid curves correspond to thicknesses 2h, = 0.4, 0.8 and 1.2 (curves 1-3) for 

~1~ = 0.5, and the dashed curves to pS = 0.5, 1 and 1.5 (curves 2, 4, 5) for 2h, = 0.8. It can be seen that the 
punch displacements observed for varying thickness of the lower layer are the same until the return of the 
wave reflected from the rigid base, in the case of the thinnest layer. As the thickness of the lower layer- 
which is softer than the second (7~~ c& c&)-increases, the return of the wave in phase from the 
interface of the second and third layers becomes more pronounced. The wave reflected from the interface 

of the first and second layers causes an increase in the punch displacements, because p1 /A = 0.5, whereas 

in Fig. 1 h lcr, = 4. If the stiffness of the lower layer is increased (the dashed curves), keeping its thickness 
fixed, a decrease occurs in the period of the system’s natural vibrations and the punch reaches equilibrium 
at an earlier time. 

Figure 3 plots W(t) for stacks of three, five and seven layers with each layer of fixed thickness 2h, = 0.2 
and stepwise varying stiffness. The solid curves are plotted for pr = l+(i-1)O.l and the dashed curves for 
H =l-(i-1)0.1. It is noteworthy that the decrease in stiffness with depth produces an increase in the 
period of the system’s vibrations, and vice versa. Addition of layers also increases the period. 

Figure 4 shows the displacements of the punch z = 0 and the points of the medium beneath it at depths 

z = -0.6, -1.2 and -1.9. The system consists of two layers of equal thickness 2h, = 2h, = 1 and stiffness 
ratio ~11 l& = 4. Clearly, this model yields a good picture of the physical nature of wave propagation in the 

medium, both while the load is acting and after its removal. It should be noted that as the depth increases 

the amplitude of the vibrations decreases and all points of the medium vibrate in phase. As the depth 

increases, the delay time (in the arrival of the wave) increases, and during that time the medium is at rest. 

The dashed curves correspond to a thickness H = 2h, =2 and p =pl = 1, at depths z= 0, -0.6, -1.2 
and -1.9. 

-7.5 
0 4 6 t 

FIG.~ 

-7.5 

0 2 4 t 

FIG. 3. 
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Y 8 t 

FIG. 4. 

All parameters represented in the figures are dimensionless. The displacements are computed in units 

of half the thickness of the punch a, the load in units of the stiffness of the upper layer A, and the time in 
units of (h /pu,)“2a. 

In all examples the other dimensionless parameters have values p, = l, v, =0.3. The load is 

p(t) = H(t) - H(t - O.Ol), the coefficient of friction in the medium c = 0.2 and the punch mass M = 1. 

We wish to thank I. I. Vorovich for discussing the results and for his comments. 
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